Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(16): 4268-4275, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607695

RESUMO

The search for alternative chemical systems other than polymers with chain topologies for soft structural materials raises general interests in fundamental materials and chemical sciences. It is also appealing from an engineering perspective for the urgent need to resolve the typical trade-offs of polymer systems. Herein, a subnanometer molecular cluster, polyhedral oligomeric silsesquioxanes, is assembled into molecular nanoparticles (MNPs) with star topology. Broadly tunable viscoelasticity can be realized by fine-tuning the MNPs' deformability. Being analogous to polymeric systems, the hierarchical structural relaxation dynamics can be observed, and their relaxation time and temperature dependence are dominated by the linker flexibilities. This not only provides microscopic understanding on MNP's unique viscoelasticity but also offers enormous opportunities for modulating their mechanical properties via linker engineering. Our work proves the possibility of applying structural units with particle topologies for the design of soft structural materials.

2.
Nat Mater ; 23(4): 570-576, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38297141

RESUMO

Soft building blocks, such as micelles, cells or soap bubbles, tend to adopt near-spherical geometry when densely packed together. As a result, their packing structures do not extend beyond those discovered in metallic glasses, quasicrystals and crystals. Here we report the emergence of two Frank-Kasper phases from the self-assembly of five-fold symmetric molecular pentagons. The µ phase, an important intermediate in superalloys, is indexed in soft matter, whereas the ϕ phase exhibits a structure distinct from known Frank-Kasper phases in metallic systems. We find a broad size and shape distribution of self-assembled mesoatoms formed by molecular pentagons while approaching equilibrium that contribute to the unique packing structures. This work provides insight into the manipulation of soft building blocks that deviate from the typical spherical geometry and opens avenues for the fabrication of 'soft alloy' structures that were previously unattainable in metal alloys.

3.
Ticks Tick Borne Dis ; 15(2): 102293, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38086248

RESUMO

Ticks are primary vectors for many tick-borne pathogens (TBPs) and pose a serious threat to veterinary and public health. Information on the presence of TBPs in Chinese Milu deer (Elaphurus davidianus) is limited. In this study, a total of 102 Chinese Milu deer blood samples were examined for Anaplasma spp., Theileria spp., Babesia spp., Rickettsia spp., and Borrelia spp., and three TBPs were identified: Anaplasma phagocytophilum (48; 47.1 %), Candidatus Anaplasma boleense (47; 46.1%), and Theileria capreoli (8; 7.8 %). Genetic and phylogenetic analysis of the 16S rRNA and 18S rRNA confirmed their identity with corresponding TBPs. To our knowledge, this is the first report on Candidatus A. boleense and T. capreoli detection in Chinese Milu deer. A high prevalence of A. phagocytophilum with veterinary and medical significance was identified in endangered Chinese Milu deer, which could act as potential zoonotic reservoirs. The identification of the TBPs in Chinese Milu deer provides useful information for the prevention and control of tick-borne diseases.


Assuntos
Cervos , Rickettsia , Theileria , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Carrapatos/microbiologia , Cervos/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Rickettsia/genética , Anaplasma/genética , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Theileria/genética , China/epidemiologia
4.
Biomacromolecules ; 24(11): 5071-5082, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37691317

RESUMO

Polymeric vehicles often exhibit batch-to-batch variations due to polydispersity, limiting their reproducibility for biomedical applications. In contrast, polyhedral oligomeric silsesquioxane (POSS) has emerged as an attractive candidate for drug delivery due to its precise chemical structure and rigid molecular shape. A promising strategy to enhance drug efficacy while reducing systemic toxicity is the development of multi-stimuli-responsive delivery systems capable of targeted drug release at a disease site. Herein, we developed a drug delivery platform based on POSS-polymer conjugates. By functionalizing the POSS with amino groups and establishing B-N coordination with boronic acids, the nanoparticles (NPs) exhibit responsive behavior to stimuli, including adenosine-5'-triphosphate (ATP), acidic pH, and nucleophilic reagents. We successfully encapsulated two boronic acid-containing molecules: tetraphenylethylene (TPE), serving as a fluorescent probe, and bortezomib (BTZ), an anticancer drug. The TPE@NPs were employed to visualize the cellular uptake of NPs by tumor cells, while the BTZ@NPs exhibited increased cytotoxicity in tumor cells compared with normal cells. This POSS-PEG conjugate offers a nanoparticle platform for encapsulating versatile boronic acid-containing molecules, thereby enhancing drug efficacy while minimizing systemic toxicity. Given the wide-ranging applications of boronic acid-containing molecules in biomedicine, our platform holds significant promise for the development of intelligent drug delivery systems for diagnostics and therapeutics.


Assuntos
Antineoplásicos , Nanopartículas , Ácidos Borônicos/química , Reprodutibilidade dos Testes , Antineoplásicos/farmacologia , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Bortezomib/farmacologia , Polímeros/química
5.
Chemistry ; 29(63): e202302352, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37584964

RESUMO

In expanding our research activities of superlattice engineering, designing new giant molecules is the necessary first step. One attempt is to use inorganic transition metal clusters as building blocks. Efficient functionalization of chemically precise transition metal clusters, however, remains a great challenge to material scientists. Herein, we report an efficient thiol-Michael addition approach for the modifications of cyclic titanium-oxo cluster (CTOC). Several advantages, including high efficiency, mild reaction condition, capability of complete addition, high atom economy, as well as high functional group tolerance were demonstrated. This approach can afford high yields of fully functionalized CTOCs, which provides a powerful platform for achieving versatile functionalization of precise transition metal clusters and further applications.

6.
Angew Chem Int Ed Engl ; 62(35): e202306905, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37418318

RESUMO

Although many monometallic active sites have been installed in metal-organic frameworks (MOFs) for catalytic reactions, there are no effective strategies to generate bimetallic catalysts in MOFs. Here we report the synthesis of a robust, efficient, and reusable MOF catalyst, MOF-NiH, by adaptively generating and stabilizing dinickel active sites using the bipyridine groups in MOF-253 with the formula of Al(OH)(2,2'-bipyridine-5,5'-dicarboxylate) for Z-selective semihydrogenation of alkynes and selective hydrogenation of C=C bonds in α,ß-unsaturated aldehydes and ketones. Spectroscopic studies established the dinickel complex (bpy⋅- )NiII (µ2 -H)2 NiII (bpy⋅- ) as the active catalyst. MOF-NiH efficiently catalyzed selective hydrogenation reactions with turnover numbers of up to 192 and could be used in five cycles of hydrogenation reactions without catalyst leaching or significant decrease of catalytic activities. The present work uncovers a synthetic strategy toward solution-inaccessible Earth-abundant bimetallic MOF catalysts for sustainable catalysis.

7.
Macromol Rapid Commun ; 44(1): e2200319, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35652408

RESUMO

Due to the fast phase separation kinetics and small feature size, the self-assembly of giant molecules has attracted lots of attention. However, there is not much study on multicomponent giant surfactants. In this work, through a modular synthetic strategy, different polyhedral oligomeric silsesquioxane (POSS)-based molecular nanoparticles are installed with diverse functionalities (hydrophobic octavinyl POSS (VPOSS), hydrophilic dihydroxyl-functionalized POSS (DPOSS), and omniphobic perfluoroalkyl-chain-functionalized POSS (FPOSS)) on the ends of one polystyrene (PS) chain to build up a series of triblock bola-form giant surfactants denoted as XPOSS-PSn -FPOSS (X represents V or D). The target molecules are prepared by a combination of atom transfer radical polymerization (ATRP), esterification, as well as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and thiol-ene "click" reactions. These macromolecules are thoroughly characterized by combined technologies including nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analyses. It is revealed by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) that VPOSS-PSn -FPOSS adopts a two-phase separation scenario where VPOSS and POSS are segregated in one phase. DPOSS-PSn -FPOSS with a third hydrophilic DPOSS shows a three-phase separation scenario, where highly ordered phase structures are difficult to develop owing to the competition of mutual phase separation processes and may be trapped in kinetically metastable states.


Assuntos
Nanopartículas , Tensoativos , Espalhamento a Baixo Ângulo , Difração de Raios X , Nanopartículas/química
8.
World J Gastrointest Surg ; 14(9): 1072-1081, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36185552

RESUMO

BACKGROUND: Tailgut cysts are defined as congenital cysts that develop in the rectosacral space from the residue of the primitive tail. As a congenital disease, caudal cysts are very rare, and their canceration is even rarer, which makes the disease prone to misdiagnosis and delayed treatment. We describe a case of caudal cyst with adenocarcinogenesis and summarize in detail the characteristics of cases with analytical value reported since 1990. CASE SUMMARY: A 35-year-old woman found a mass in her lower abdomen 2 mo ago. She was asymptomatic at that time and was not treated because of the coronavirus disease 2019 pandemic. Two weeks ago, the patient developed abdominal distension and right waist discomfort and came to our hospital. Except for the high level of serum carcinoembryonic antigen, the medical history and laboratory tests were not remarkable. Magnetic resonance imaging showed a well-defined, slightly lobulated cystic-solid mass with a straight diameter of approximately 10 cm × 9 cm in the presacral space, slightly high signal intensity on T2-weighted imaging, and moderate signal intensity on T1-weighted imaging. The mass was completely removed by laparoscopic surgery. Histopathological examination showed that the lesion was an intestinal mucinous adenocarcinoma, and the multidisciplinary team decided to implement postoperative chemotherapy. The patient recovered well, the tumor marker levels returned to normal, and tumor-free survival has been achieved thus far. CONCLUSION: The case and literature summary can help clinicians and researchers develop appropriate examination and therapeutic methods for diagnosis and treatment of this rare disease.

9.
Angew Chem Int Ed Engl ; 61(28): e202203433, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35478477

RESUMO

The hierarchical self-assembly process opens up great potential for the construction of nanostructural superlattices. Precise regulation of self-assembled superlattices, however, remains a challenge. Even when the primary molecules are precise, the supramolecular motifs (or secondary building blocks) can vary dramatically. In the present work, we propose the concept of unimolecular nanoparticles (UMNPs). The UMNPs act as the supramolecular motif and directly pack into the superlattices. A highly branched giant molecule is presented. We systematically explore its conformations and the superlattice of this giant molecule. Moreover, intriguing complex phases are discovered when blending this UMNP with other conventional giant molecules. These binary mixtures provide direct evidence to support our previously proposed self-sorting process in the self-assembly of "soft alloys". The concept of UMNPs offers a unique approach toward more precise regulation of self-assembled superlattices in soft matter.

10.
Angew Chem Int Ed Engl ; 61(19): e202200637, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35174943

RESUMO

The packing structures of spherical motifs affect the properties of resultant condensed materials such as in metal alloys. Inspired by the classic metallurgy, developing complex alloy-like packing phases in soft matter (also called "soft alloys") is promising for the next-generation superlattice engineering. Nevertheless, the formation of many alloy-like phases in single-component soft matter is usually thermodynamically unfavourable and technically challenging. Here, we utilize a novel self-sorting assembly approach to tackle this challenge in binary blends of soft matter. Two types of giant shape amphiphiles self-sort to form their discrete spherical motifs, which further simultaneously pack into alloy-like phases. Three unconventional spherical packing phases have been observed in these binary systems, including MgZn2 , NaZn13 , and CaCu5 phases. It's the first time that the CaCu5 phase is experimentally observed in soft matter. This work demonstrates a general approach to constructing unconventional spherical packing phases and other complex superlattices in soft matter.

11.
Proc Natl Acad Sci U S A ; 119(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35022240

RESUMO

The quasiperiodic structures in metal alloys have been known to depend on the existence of icosahedral order in the melt. Among different phases observed in intermetallics, decagonal quasicrystal (DQC) structures have been identified in many glass-forming alloys yet remain inaccessible in bulk-state condensed soft matters. Via annealing the mixture of two giant molecules, the binary system assemblies into an axial DQC superlattice, which is identified comprehensively with meso-atomic accuracy. Analysis indicates that the DQC superlattice is composed of mesoatoms with an unusually broad volume distribution. The interplays of submesoatomic (molecular) and mesoatomic (supramolecular) local packings are found to play a crucial role in not only the formation of the metastable DQC superlattice but also its transition to dodecagonal quasicrystal and Frank-Kasper σ superlattices.

12.
J Am Chem Soc ; 143(51): 21613-21621, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34913335

RESUMO

Correlating nanoscale building blocks with mesoscale superlattices, mimicking metal alloys, a rational engineering strategy becomes critical to generate designed periodicity with emergent properties. For molecule-based superlattices, nevertheless, nonrigid molecular features and multistep self-assembly make the molecule-to-superlattice correlation less straightforward. In addition, single component systems possess intrinsically limited volume asymmetry of self-assembled spherical motifs (also known as "mesoatoms"), further hampering novel superlattices' emergence. In the current work, we demonstrate that properly designed molecular systems could generate a spectrum of unconventional superlattices. Four categories of giant molecules are presented. We systematically explore the lattice-forming principles in unary and binary systems, unveiling how molecular stoichiometry, topology, and size differences impact the mesoatoms and further toward their superlattices. The presence of novel superlattices helps to correlate with Frank-Kasper phases previously discovered in soft matter. We envision the present work offers new insights about how complex superlattices could be rationally fabricated by scalable-preparation and easy-to-process materials.

13.
J Am Chem Soc ; 143(33): 12935-12942, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387467

RESUMO

We report the preparation of hexagonal mesoporous silica from single-source giant surfactants constructed via dihydroxyl-functionlized polyhedral oligomeric silsesquioxane (DPOSS) heads and a polystyrene (PS) tail. After thermal annealing, the obtained well-ordered hexagonal hybrid was pyrolyzed to afford well-ordered mesoporous silica. A high porosity (e.g., 581 m2/g) and a uniform and narrow pore size distribution (e.g., 3.3 nm) were achieved. Mesoporous silica in diverse shapes and morphologies were achieved by processing the precursor. When the PS tail length was increased, the pore size expanded accordingly. Moreover, such pyrolyzed, ordered mesoporous silica can help to increase both efficiency and stability of nanocatalysts.

14.
ACS Appl Mater Interfaces ; 13(26): 31215-31225, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34169717

RESUMO

Control of the shape and uniformity of colloid particles is essential for realizing their functionality in various applications. Herein, we report a facile approach for the synthesis of narrowly dispersed anisotropic microparticles with well-defined raspberry-like and golf ball-like surface patterns. First, we demonstrate that hybrid raspberry-like particles can be achieved through a one-pot polymerization method using glycidyl polyhedral oligomeric silsesquioxane (GPOSS) and pentaerythritol tetra(3-mercaptopropionate) (PETMP) as monomers. Varying the polymerization parameters such as catalyst loading, monomer concentration, and the molar ratio of monomers, we are able to regulate the sizes and surface protrusion numbers of these raspberry-like microparticles. The formation mechanism is attributed to a competition balance between thiol-epoxy reaction and thiol-thiol coupling reaction. The former promotes rapid formation of large core particles between PETMP and GPOSS droplets (which can serve as core particles), while the latter allows for generation of surface protrusions by PETMP self-polymerization, leading to the formation of raspberry-like surface patterns. Based on the different POSS contents in the surface protrusions and cores of the raspberry-like microparticles, we demonstrate that they can be used as precursors to produce microporous silica (sub)microparticles with golf ball-like morphology via pyrolysis subsequently. Overall, this work provides a facile yet controllable approach to synthesize narrowly dispersed anisotropic microparticles with diverse surface patterns.

15.
Chemistry ; 27(30): 7992-7997, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33830540

RESUMO

Achieving self-assembled nanostructures with ultra-small feature sizes (e. g., below 5 nm) is an important prerequisite for the development of block copolymer lithography. In this work, the preparation and self-assembly of a series of giant molecules composed of vinyl polyhedral oligomeric silsesquioxane (VPOSS) tethered with monodispersed oligo(L-lactide) chains are presented. Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) results demonstrate that ultra-small domain sizes (down to 3 nm) of phase separated lamellar morphology are achieved in bulk, driven by the strong tendency and fast kinetics for crystallization of VPOSS moieties. Moreover, upon gamma ray radiation, VPOSS cages in the lamellar structure can be crosslinked via polymerization of the vinyl groups. After pyrolysis at high temperature, ultra-thin two-dimensional nano-silica sheets can be obtained.

16.
Angew Chem Int Ed Engl ; 60(4): 2024-2029, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33111472

RESUMO

Despite the significant advances in creating assembled structures from polymers, engineering the assembly of polymeric materials into framework structures remains an outstanding challenge. In this work, we present a facile strategy to construct polymeric molecular frameworks through the assembly of T-shape polymer-rod-sphere amphiphiles in the bulk state. Various frameworks are yielded as a result of delicate interplays among three components of the T-shape amphiphiles. The internal structure of frameworks was revealed by combining experimental investigations and computational simulations. The frameworks display good solution-processability, thermal stability, and uniform pore-forming capability, which endow the resultant frameworks with great potential in scalable fabrications.

17.
Angew Chem Int Ed Engl ; 60(9): 4894-4900, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33210413

RESUMO

Granular materials, composed of densely packed particles, are known to possess unique mechanical properties that are highly dependent on the surface structure of the particles. A microscopic understanding of the structure-property relationship in these systems remains unclear. Here, supra-nanoparticle clusters (SNPCs) with precise structures are developed as model systems to elucidate the unexpected elastic behaviors. SNPCs are prepared by coordination-driven assembly of polyhedral oligomeric silsesquioxane (POSS) with metal-organic polyhedron (MOP). Due to the disparity in sizes, the POSS-MOP assemblies, like their classic nanoparticles counterparts, ordering is suppressed, and the POSS-MOP mixtures will vitrify or jam as a function of decreasing temperature. An unexpected elasticity is observed for the SNPC assemblies with a high modulus that is maintained at temperatures far beyond the glass transition temperature. From studies on the dynamics of the hierarchical structures of SNPCs and molecular dynamic simulation, the elasticity has its origins in the interpenetration of POSS-ended arms. The physical molecular interpenetration and inter-locking phenomenon favors the convenient solution or pressing processing of the novel cluster-based elastomers.

18.
ACS Nano ; 14(10): 13816-13823, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32935968

RESUMO

Anisotropic patchy particles with molecular precision are exquisite building blocks for constructing diverse meso-structures of high complexity. In this research, a library of molecular patchy clusters consisting of a collection of functional polyhedral oligomeric silsesquioxane cages with exact regio-configuration and composition were prepared through a robust and modular approach. By meticulously tuning the composition, molecular symmetry, and other parameters, these patchy clusters could assemble into diverse nanostructures, including unconventional complex spherical phases (i.e., Frank-Kasper σ phase and dodecagonal quasicrystalline phase). As the size of the hydrophilic patch expands, a transition sequence from disorder to hexagonally packed cylinders and then to double gyroids was recorded, corresponding to a progressive decrease of interfacial curvature. On the other hand, regioisomers with the same composition but different regio-configuration adopt similar molecular packing but varied phase stability, as a result of the local self-sorting process to alleviate excess unfavorable interfacial contact. These precisely defined molecular patchy clusters provide a model system for a general understanding of the hierarchical structure formation and evolution based on anisotropic spherical building blocks at the nanoscale.

19.
Angew Chem Int Ed Engl ; 59(42): 18563-18571, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32656991

RESUMO

Like other discotic molecules, self-assembled supramolecular structures of perylene bisimides (PBIs) are commonly limited to columnar or lamellar structures due to their distinct π-conjugated scaffolds and unique rectangular shape of perylene cores. The discovery of PBIs with supramolecular structures beyond layers and columns may expand the scope of PBI-based materials. A series of unconventional spherical packing phases in PBIs, including A15 phase, σ phase, dodecagonal quasicrystalline (DQC) phase, and body-centered cubic (BCC) phase, is reported. A strategy involving functionalization of perylene core with several polyhedral oligomeric silsesquioxane (POSS) cages achieved spherical assemblies of PBIs, instead of columnar assemblies, due to the significantly increased steric hindrance at the periphery. This strategy may also be employed for the discovery of unconventional spherical assemblies in other related discotic molecules by the introduction of similar bulky functional groups at their periphery. An unusual inverse phase transition sequence from a BCC phase to a σ phase was observed by increasing annealing temperature.

20.
Angew Chem Int Ed Engl ; 59(13): 5226-5234, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31957938

RESUMO

How biomembranes are self-organized to perform their functions remains a pivotal issue in biological and chemical science. Understanding the self-assembly principles of lipid-like molecules hence becomes crucial. Herein, we report the mesostructural evolution of amphiphilic sphere-rod conjugates (giant lipids), and study the roles of geometric parameters (head-tail ratio and cross-sectional area) during this course. As a prototype system, giant lipids resemble natural lipidic molecules by capturing their essential features. The self-assembly behavior of two categories of giant lipids (I-shape and T-shape, a total of 8 molecules) is demonstrated. A rich variety of mesostructures is constructed in solution state and their molecular packing models are rationally understood. Giant lipids recast the phase behavior of natural lipids to a certain degree and the abundant self-assembled morphologies reveal distinct physiochemical behaviors when geometric parameters deviate from natural analogues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...